EXERCICE 1

PARTIE A

1) je calcule
$$\frac{b(x)}{a(x)} = -\frac{1}{x}$$
 d'où $\int \frac{b(x)}{a(x)} = -\ln x$ d'où $y = \lambda e^{\ln x} = \lambda x, \lambda \in \mathbb{R}$

2) j'ai $h(x) = -\ln x - 1$, je calcule $h'(x) = -\frac{1}{x}$, je remplace dans l'équation (E), je trouve

$$x \times \left(-\frac{1}{x}\right) - \left(-\ln x - 1\right) = -1 + \ln x + 1 = \ln x$$

3) j'en déduis les solutions générales de (E), en ajoutant solution homogène (question 1) et solution particulière (question 2):

$$f(x) = \lambda x - \ln x - 1, \ \lambda \in \mathbb{R}$$

je veux $f(1) = 1 \Leftrightarrow \lambda - 0 - 1 = 1 \Leftrightarrow \lambda = 2$, conclusion:

$$f(x) = 2x - \ln x - 1$$

PARTIE B

1) • si
$$x \to 0$$
, alors $2x - 1 \to -1$ et $-\ln x \to +\infty$ d'où $\lim_{n \to +\infty} f = +\infty$

• si $x \to +\infty$, alors $2x - 1 \to +\infty$ et $-\ln x \to -\infty$ d'où forme indéterminée, on factorise par x,

$$f(x) = x \left(2 - \frac{\ln x}{x} - \frac{1}{x} \right) d'où \lim_{x \to +\infty} f = +\infty$$

2) $f'(x) = 2 - \frac{1}{x}$. Pour étudier le signe de ce genre de chose, une technique qui revient

souvent: mettre au même dénominateur : $f'(x) = \frac{2x-1}{x}$.

tableau de variations:

х	0	1/2	+∞
f'(x)	+		_
f	+8	► ln2	V +∞

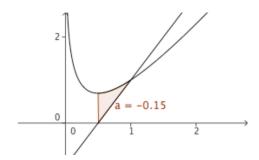
PARTIE C

- 1) on a $f(x)-(2x-1)=-\ln x$, positif entre 0 et 1, et négatif au delà de 1. Donc Cf au dessus de D dans [0,1], en dessous dans $[1;+\infty[$.
- 2) voir ci dessous

3)a)
$$H'(x) = \ln x + x \frac{1}{x} - 1 = \ln x + 1 - 1 = \ln x$$

3)b)
$$\int_{\frac{1}{2}}^{1} -\ln x dx = -\left[x \ln x - x\right]_{\frac{1}{2}}^{1} = 1 - \left(-\frac{1}{2} \ln \frac{1}{2} + \frac{1}{2}\right) = \frac{1}{2} - \frac{\ln 2}{2} = \boxed{\frac{-\ln 2 + 1}{2}} \approx -0.15342640972$$
pour l'aire on multiplie par 4x4 donc $A \approx 2.4548225555$ cm².

bts 2001 mathématiques groupement C, page 1 sur 3 (mail : elo.exos escargot gmail.com)



EXERCICE 2

PARTIE A

1) Loi normale

Posons $X_0 = \frac{X - 25}{0.44}$, alors X_0 suit la loi normale centrée réduite N(0,1), celle dont la table figure dans le formulaire.

1)
$$p(X < 25, 2) = p\left(X_0 < \frac{25, 2 - 25}{0,44}\right) = p\left(X_0 < 0, 45 \text{ environ}\right)$$
soit $p(X < 25, 2) = \prod(0, 45)$
on trouve avec la table $p(X < 25, 2) = 0,6736$

Deuxième probabilité, même principe

$$p(24,1 < X < 25,9) = p(-2,05 < X_0 < 2,05) = 2 \prod (2,05) - 1 \approx 0.96$$

rappels:

Loi normale centrée réduite :
si $a > 0$, alors $p(X < a) = \prod (a)$
si $a < 0$, alors $p(X < a) = 1 - \prod (-a)$
si $a > 0$, alors $p(-a < X < a) = 2 \prod (a) - 1$
si $a < 0 < b$, alors $p(a < X < b) = \prod (-a) + \prod (b) - 1$
si $0 \le a \le b$, alors $p(a \le X \le b) = \prod(b) - \prod(a)$
si $a < b < 0$, alors $p(a < X < b) = \prod (-a) - \prod (-b)$

- 2)a) On répète 150 fois le même événement (tirer une bille), la probabilité d'une bille défectueuse est la même à chaque fois, donc Y suit la loi binômiale.
- 2)b) la loi binomiale du a) a pour paramètres n=150 et p=0,04, elle peut donc être approchée par une loi de Poisson de paramètre $\lambda = 6$

bts 2001 mathématiques groupement C, page 2 sur 3 (mail : elo.exos escargot gmail.com)

Poisson approchant binomiale

une loi binomiale B(n,p) peut être approchée raisonnablement par une loi de Poisson de paramètre $\lambda = n \cdot p$ à condition que n soit supérieur à 20 (c'est limite) ou 50 (c'est mieux) et que p soit inférieur à 10%. Il faut aussi que n fois p soit proche d'un entier, sinon le formulaire ne permet pas d'avoir des valeurs par Poisson.

Loi de Poisson

2)b) « au plus 4 billes » cela veut dire, 0,1,2,3 ou 4 billes. on trouve, en ajoutant tous les nombres ci contre, que cette probabilité d'obtenir au plus 4 billes défectueuses vaut 0,303 soit, si l'on traduit en termes de pourcentages, $p(E_3) = 30,3\%$

· A	6		
0	0.002		
1	0.015		
2	0.045		
3	0.089		
4	0.134		

PARTIE B

1)

H0 "la différence observée est due aux fluctuations d'échantillonnage"

H1 "la différence observée est significativement anormale"

2)
$$\overline{X}$$
 suit une loi normale de paramètres $m = 25$ et $\sigma = \frac{0.44}{\sqrt{125}} \approx 0.03935$

Échantillonage

si X suit la loi normale $N(m,\sigma)$, si l'on répète K fois l'événement correspondant à la variable X, si \overline{X} désigne la moyenne de X sur ces K répétitions, alors \overline{X} suit la loi normale $N\left(m,\frac{\sigma}{\sqrt{K}}\right)$

2)b) On demande de calculer

$$p(25 - a \le \overline{X} \le 25 + a) = 0.95 \Leftrightarrow p\left(\frac{-a}{0.03935} \le \frac{\overline{X} - 25}{0.03935} \le \frac{a}{0.03935}\right) = 0.95$$

$$\Leftrightarrow 2 \prod \left(\frac{a}{0,03935}\right) - 1 = 0,95 \Leftrightarrow \prod \left(\frac{a}{0,03935}\right) = 0,975 \Leftrightarrow \frac{a}{0,03935} = 1,96 \Leftrightarrow a \approx 0,077$$

- 2)c) si 25,1 est dans l'intervalle [25-a;25+a] soit [24,923; 25,077], l'hypothèse H0 est bonne, sinon c'est H1
- 3) il ne peut pas faire confiance à l'entreprise.