Récapitulatif sur le Barycentre

Barycentre de deux points :

On appelle barycentre des deux points A et B affectés des coefficients α et β tels que $\alpha + \beta \neq 0$,

l'unique point G défini par : $\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} = \overrightarrow{0}$

<u>Construction de G</u>: $\overrightarrow{AG} = \frac{\beta}{\alpha + \beta} \overrightarrow{AB} \implies G \in (AB)$

Théorème de réduction :

Pour tout point M du plan ou de l'espace ,

on a : $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} = (\alpha + \beta) \overrightarrow{MG}$

Barycentre de trois points et plus

<u>Définition</u>:

On appelle barycentre des trois points pondérés A, B et C

affectés des coefficients α , β et γ respectivement,

l'unique point G défini par : $\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC} = \overrightarrow{0}$.

<u>Propriété</u>: le barycentre de trois points pondérés non alignés, appartient au plan déterminé par ces trois points.

<u>Théorème</u> de réduction :

Soit G le barycentre des points pondérés $(A; \alpha)$, $(B; \beta)$ et $(C; \gamma)$ avec $\alpha + \beta + \gamma \neq 0$, alors pour tout point M du plan ou de l'espace

on a: $\alpha \overrightarrow{MA} + \beta \overrightarrow{MB} + \gamma \overrightarrow{MC} = (\alpha + \beta + \gamma) \overrightarrow{MG}$

<u>Homogénéité</u>: Si G est le barycentre de $(A; \alpha)$, $(B; \beta)$ et $(C; \gamma)$

Alors G est aussi le barycentre de $(A; k\alpha)$, $(B; k\beta)$ et $(C; k\gamma)$

où k réel non nul .

Principe de l'associativité du barycentre :

Si G est le barycentre de $(A; \alpha)$, $(B; \beta)$ et $(C; \gamma)$

et si H est le barycentre de $(B; \beta)$, $(C; \gamma)$

Alors d'après le théorème du barycentre partiel:

G est le barycentre de $(A; \alpha)$, $(H; \beta + \gamma)$

<u>Coordonnées barycentriques</u>: le plan est rapporté à un repère $(O; \vec{i}; \vec{j})$. Soit A, B et C trois points de coordonnées respectives $(x_A; y_A)$, $(x_B; y_B)$ et $(x_C; y_C)$

Les coordonnées du barycentre G du système $(A;\alpha)$, $(B;\beta)$ et $(C;\gamma)$

avec $\alpha + \beta + \gamma \neq 0$ sont : $x_G = \frac{\alpha . x_A + \beta . x_B + \gamma . x_C}{\alpha + \beta + \gamma}$ et $y_G = \frac{\alpha . y_A + \beta . y_B + \gamma . y_C}{\alpha + \beta + \gamma}$